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A DUALITY THEOREM FOR WILLMORE
SURFACES

ROBERT L. BRYANT

0. Introduction
In 1965 T. J. Willmore [12] proposed to study the functional

#(X) =fMH2dA

on immersions X: M2 — E* where M? is a compact surface, H is the mean
curvature of the immersion, and d4 is the induced area from (or area density if
M is not oriented). If we define

#(X) =fM(H2— K)dA,

then by the Gauss-Bonnet theorem
W (X) = #(X) +2ax(M),

so the two functionals differ by a constant. The functional #7(X) has the
advantage that its integrand is nonnegative and vanishes exactly at the umbilic
points of the immersion X.

Obviously #°(X) =0 iff M?=S? and X is totally umbilic. Thus, the
absolute minimum of % on the space of immersions X: S§? — E? is.0 and the
critical locus of such X is known. When M is a torus, Willmore provided an
example of an immersion X: M — E? with #°(X) = 27? and showed that
#(X) > 2#=? for all smooth surfaces of revolution. He then conjectured that
# (X)) > 272 for all immersions of the torus with equality only for the
example he provided: the anchor ring swept out by revolving a circle of radius
r about the line whose distance from the center of the circle was /2. White
then pointed out that the two-form (H?2 — K) d4 had the property of being
invariant under conformal transformations of E* plus the “point at infinity”
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and hence that the cyclides of Dupin generated from Willmore’s anchor ring
by conformal transformations must also satisfy #7°(X) = 272 The conjecture
was then modified so that equality was supposed to hold only if the immersion
was conformally equivalent to Willmore’s anchor ring.

In 1982, Li and Yau introduced the notation of conformal area, V_ (M), for
a surface M with a fixed conformal structure. They then showed that, for a
conformal immersion X: M? - E3,

#(X) > V.(M).

Since they were able to show that V(M) > 27? for M a torus with a
conformal structure near that of the square torus, this proves part of Willmore’s
conjecture.

In this paper, we study the Willmore functional using the conformal
invariance from the outset. In §1 we develop the structure equations for
conformal three-space (i.e., S*). We then apply the moving frame to study
immersed surfaces X: M? — §° We define a conformally invariant 2-form @
on M and show that for any stereographic projection p: S3 — {y,} — E?, the
equation

Q,=(H>-K)dd

holds, where the quantities on the right are computed for the immersion p o X:
M — E3 This demonstrates the conformal invariance of the Willmore
integrand and the conformal invariance of the umbilic locus %, =
{m e M|Q,(m)=0}.

We then construct, on the compliment of the umbilic locus, a smooth map
X: M — &, — S with the defining property that if m, & %, then X(m,) is
the unique point so that the mean curvature of p o X vanishes to second order
at my, for any stereographic projection p: S* — { X(my)} = E> We call X the
conformal transform of X. Unfortunately, it is not true, in general, that X = X.

In §2, we compute the Euler-Lagrange equation for the functional #”. In
Euclidean terms, this is known to be the equation

AH +2(H?>— K)H = 0.

Our derivation is conformally invariant and leads us to consider the complex
structure on M? induced by the induced conformal structure and a choice of
orientation on M2 We say that an immersion X: M2 — S3 is a Willmore
immersion if it is a critical point of the Willmore functional. In §3 we prove
two basic theorems relating the Willmore immersion to the complex structure.
The first, Theorem B, constructs a holomorphic quartic differential on M from
the Willmore immersion X, denoted 2 . The second, Theorem C, shows that if
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a Willmore immersion is not totally umbilic, then the conformal transform
completes smoothly to a branched conformal immersion X M- s If
2, =0, then X is constant. If 2, = 0, then X is also a Willmore (branched)
immersion and satisfies X = X. We say that X is the Willmore dual of X.

In §4, we use the fact that 2, = 0 for M = S? to completely classify the
Willmore immersions X: $2 — §? in terms of a special family of minimal
surfaces of finite total curvature in E>. In turn, we reduce this problem to an
algebraic geometry problem concerning zeros and poles of meromorphic
functions on CP!. In fact we show that all the critical values of % on spherical
immersions are nonnegative multiples of 4«. This result is closely related to
another theorem of Li and Yau. They show that for any immersion of a
compact surface X: M? — E? the inequality % (X) > 4wk holds, where k is
the maximum number of points in X !( p) as p ranges over E>. We show that,
for Willmore immersions satisfying 2, = 0, equality always holds in their
theorem. It is an interesting question whether or not equality implies 2 , =

Finally in §5, we compute an example. We find there is a 4-parameter family
of Willmore immersions X: §2 — §* with #°(X) = 127 (the next nontrivial
case after ¥ (X) = 0). This parameter space is noncompact and its members
are inequivalent under reparametrizations in $? and conformal transforma-
tions in S>. We indicate that the moduli space of Willmore immersions with
#(X) = 42d + 1) is of dimension 4d for d > 0. We then close with a short
discussion of the cases where X: M2 — S* is a branched conformal Willmore
immersion.

The methods of the moving frame are used throughout the paper. The basic
reference on Riemann surfaces has been [5] and our notations for divisors and
line bundles are consistent with this reference. It is a pleasure to thank Phillip
Griffiths for the many interesting discussions concerning Riemann surfaces
and invariant variational problems which inspired this work.

1. Conformal geometry of surfaces in S>

We first describe the standard model of S* as a conformal space. On R®, we
consider the standard Minkowski inner product

(x, ) = =x%% + xY' + x%2 + x%° + x4,

where x = (x?), y = (y?) and we use the index range 0 < a, b, ¢ < 4. Follow-
ing the terminology of relativity, we say that an x € R® is space-like if
(x, x> > 0, time-like if (x,x> < 0, and light-like (or null) if x # 0 but
(x, x) = 0. We fix an orientation on R’ by requiring dx® A dx! A dx? A dx?
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A dx* > 0, and we fix a time-orientation on R® by saying that a time-like or
light-like vector x € R is positive (or future directed) if x° > 0. For brevity, we
will simply write L® to denote R® together with the three choices of inner
product, orientation, and time-orientation.

The space of null lines through 0 € L’ forms a smooth manifold diffeomor-
phic to the three-sphere and henceforth will be denoted by S°. Let £+ denote
the space of positive null vectors in L’. For each x € .#*, we denote the line
spanned by x by (x). This gives us a map #*— S* which is a smooth
submersion. The fibers of this map are the positive null rays emanating from
0 € L°. The metric on L’ restricts to the hypersurface #* to be a degenerate
inner product of type (3,0). The null space at each x € £ is the tangent to
the line (x). The dilation x — rx (r > 0) multiplies this metric by a factor of
r2. It follows that, up to a positive factor, this metric descends to S°. In this
way, S* inherits a natural conformal structure. If v,, v,, v; form a basis of
T,.,S> let e, e,, e; € T, #* denote a set of preimages under the map 7, %" —
T,,,S°. We say that v; Av, Avs>0 if x AejAeyAeyAy>0, where
y £ but y & (x). It is an exercise to check that this well-defines an
orientation on S (independent of our choices of x, e, and y).

An automorphism of L’ is a linear automorphism of R> which preserves
(', ), the orientation and the time-orientation. We denote the group of
automorphisms of L°, by Aut(L’). This is known to be a connected Lie group
of dimension 10 and is isomorphic to the identity component of the group
SO(4,1), see [7]. The group Aut(L?) acts on S in the obvious way and induces
a group of conformal, orientation-preserving diffeomorphisms of S3. It is a
classical theorem that each conformal, orientation-preserving diffeomorphism
of $* is induced by a unique element of Aut(L’), see [1].

Another classical model of S° is “E* with a point at infinity”. Because we
will need to compare surface theory in E* with conformal surface theory in S3,
we comment on how this transition is made. First, we note that, for x, y € £,
we have (x, y) < 0with (x, y) = 0iff x A y = 0. Thus, if we set

E, = {x ev,?*Kx, y) = -1},

then the natural map E, <> £*— S? establishes a diffeomorphism E, > §° —
{(»)}- If we give E, the (positive definite) metric induced on it as a submani-
fold of L3, then this map is obviously conformal.

Proposition 1. The space E, with its induced metric is isometric to E3.

Proof. Letx, € E, be fixed and define the affine map P: L’ - (xo)*

P(z)=z— xq+ {xq, 2)y.
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This map establishes a diffeomorphism between E, and the three-plane (x,, y) +
(necessarily a space-like plane). The inverse is give by the quadratic map
O(w)=xo+w+ 2w, why, we(x, ).
It remains to show that this is an isometry if we give (x,, y)* the induced

metric. However, if z € E, and z € T E,, then we have (z,y) =0. We
compute

(P(2), Pu(2)) = (2 + (x0, 1)y, 2 + (X0, 2)y)
= (2, 2) +2(x0, 2){2, ¥) + (%0, )X, »)
= (z,2). q.ed.

In order to study surface theory in S?, we introduce moving frames. Let
B = (B,,) denote the symmetric matrix

0 0 -1
B=|0 I 0
-1 0 0

We let # denote the space of positively oriented bases £ = (e, ey, e,, €3, €,)
= (e,) of L’ satisfying the condition
<ea’eb> =Bab’ eO’ €4 €$+'
The group Aut(L’) acts simply transitively on % in the obvious way. This

shows that % is a connected smooth manifold of dimension 10.
We let

0(B) = {g € M;xs(R)|'gBg = B},
and we let G be the connected component of the identity I € O(B). Note that

G is isomorphic to Aut(L’), though not canonically. G acts naturally on the
right of # by the formula

t-8=1(e,) g=es82),
where g = (gb) € G. This action is also simply transitive. Hence we may
identify # with G up to a left translation in G.

If we regard the components of £ € # as determining L°-valued functions
on F, e, F— L°, then we may compute their exterior derivatives, de, as
vector-valued 1-forms on #. Since the e, form a basis, there exist unique
1-forms w$ on # satisfying
(1.1) de, = eyws.

Differentiating (1.1), we get
(1.2) dwj = -0 N .
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These are the structure equations of E. Cartan. If we differentiate the relation
(e,, e,y = B,, and set w,, = B, w5, then we get the relations

(1.3) Wy + Wy, = 0.

Thus, only ten of the w4 are independent. Under an identification of # with
G up to left translation, these are a basis for the left-invariant forms on G.
The map (e,): F— S* makes # into a fiber bundle over S with fiber

Go={g € Gleg(¢- g) = eg(#) forall € # ).

It is easy to compute that

. r 1 4 %rtcc r>0,ce M3><1(R)
0= 0 A re and 4 € 50(3) < M3><3(R) .
r

From this, we see that the forms {w}, w?, w3} span the semibasic forms for
the projection (ey): #— S°. In fact, the symmetric quadratic form (w})? +
(@w3)? + (w3)? and the exterior 3-form w) A w2 A w} are well defined up to a
positive multiple on S3 and determine the conformal structure and orientation
respectively. »

Now let M? be an oriented surface and suppose we are given a smooth
immersion X: M2 — S We want to study its geometric invariants under the
conformal group of S3. ’

We define the Oth order frame bundle of X, #°, by

FO={(p. ) e M X F|X(p) = (e)(£)}.

We have a diagram:

¢
FO o F

V4 1 l(‘-’o)
X

M 53

We will now work on #9. Following the usual practice in the theory of
moving frames (see [2]) we will write ¢ instead of £*(¢) to denote forms on
F which are pulled back from . This should cause no confusion as long as
we clearly specify the manifold on which we are working.

The forms {w}, w3, w3} on F are now semibasic for p. Since M has
dimension 2, there must be a relation among these three forms and because p:
F - M is a submersion, there cannot be more than one such linear relation.
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If g € G, is of the form

rt oA Lriee
E=|( 0 A re. |-
0 0 r
then one computes that
1 1
@o @o
2| = p-lg-1} 2
RY | w5 rrAT wg g,
3 3
@o @o

where R : #0 » FVis R, (p, £) = (p, ¢- g).
It follows that we may define the first-order frame bundle, #{, by

F0 = {(p.8) € F L\, 0= 0. (& A 0F) (5.5 > 0}

We remark that, because M? is assumed oriented, the 2-forms on M which
do not vanish are divided into positive and negative; so too are the semibasic,
nonvanishing 2-forms on #{”. Thus, once we impose the condition «} = 0, the
nonvanishing of wh A w? allows us to choose its sign. We define the group

r/t 'pA Sripp ¢c -5 0
G, = 0 A rp EGlAd=|s ¢ 0], c2+s*=1
0 0 r 0 0 1

and we note that p: F — M is a right principal G,-bundle over #P. We
now restrict the forms on #? to # . The forms { w}, w3} are now a basis for
the semibasic forms. Because wj = 0 and because wg = 0 by (1.3), we compute

= ded = 3 13 2
0=dwy=-w] A og— w3 A wj.

It follows, by Cartan’s Lemma, that there exist smooth functions 4,; = h
on M so that w} = h,,w]f. Here, we adopt the index range 1 < i, j < 2.
One now computes that

h h hy, —p? h -
P B C | AR ()
hy hay hy 4

Ji

when
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with
1
¢ —s 0 p
A=|s ¢ 0|, p=|p?
0O 0 1 p3

Correspondingly, if we differentiate the equations w? = %,,0f and apply
Cartan’s Lemma, we get the infinitesimal version of the above equation:
dhij = —8,.jw(3) + h,.ng + h,.kwjlf + hkiw,].‘ + hijkwg,
where { 4, } are smooth functions on #, D symmetric in all indices (1 < i, j, k
< 2).
It follows that, without making any further nondegeneracy assumptions, we
can always make a partial second-order reduction:

F0 = {(p, ¢) € FPN by + hyy)(p, £) =0} c FPD.
This is a G -bundle over M, where

rt pA r'pp p'
G, = 0 A rp € G,p= P2
o 0 - 0

Our formulae imply that, on #, for g € G,,
R;(%(hu’ - hzz)2 + hlzz) = ’2(%(}111 - hzz)2 + h%z)a
R’;(w%) Awd)=r24 A Wl
Thus, there exists a smooth 2-form on M, Q ,, which satisfies
. 2
P*(ﬂx) = (%(hu - hzz) + h%z)‘*’%) A ‘*’(2)-

Note that & > 0. We define the umbilic locus of Xby % = { p € M|(2y),

= 0}. This terminology will be justified below. Note that % is closed. Let

A’y € M denote the compliment of %, in M. We assume that 4y * &. We
can define the second order frame bundle, %, over 47 by

e B ER

This is a G,-bundle over 4/, where

7= (.0 e5p

1 ‘'pAd iripp c 0 0 P
G, = 0 4 p [l4=10 ¢ 0],c2=1,p= p?
0 0 1 0 0 1 0

Note that G, € G, and that #? € F".
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Our formulae for dh,; now implies w3 = h,wp, + h,w5, where we have set
h; = }(hyy; + hy, ) for brevity. We then compute

R*(hl - hy + p'
f\hy hz_P2
when
2
1 g @ 0 () +(r?))
0 ¢ 0 0 P
- € G,.
=10 0 ¢ o p? 2
0o 0 0 1 0
0 0 0 0 1

It follows that we may define the third order frame bundle, %, over A"y by
F={(p, £) € FP\hy = hy = 0},

Now G, C G, is a discrete group isomorphic to Z/(2). It is defined by the
above formula with p* = p? = 0.

Note that, for g € G,, we have the identity e;(£ - g) = e;(£). It follows that
€30 F4Y) — L is constant on the fibers of the G -bundle p: #{ — M? and
hence there exists a unique smooth map y,: M? — L’ so that e; = yyo p =
P*(vy) on F 0.

Note that because {e,, e;) = 1, we see that v,,;: M2 — Q, where

0= {xel’[x,x) =1}.

For reasons that will be made clear below, we call y4: M? — Q the conformal
Gauss map of the immersion X.

Obviously, e,: #» — L’ is constant on the fibers of p: % — L°. Thus we
may define a mapping X: A"y — S° by the formula

X(p) = (es(p.8), (p,8)eFP.

We call X the conformal transform of the immersion X (when 4" # @).

These two associated maps play an important role in the sequel. We will now
pause to interpret them in terms of more familiar classical invariants of
Euclidean surface theory.

We have already noted that, by identifying E* with E, C ., we may regard
E° as S* minus a point. Now fix y € Z* and let #, = {£= (e,) € Fle, = y}.
The projection e,: %, — E, then makes %, into an SO(3)-bundle over E . If we
restrict the forms «j to #,, we get wj = 0 since e, wj = de, = dy = 0. Since
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(1.3) implies wj = —wg we see that on %, we have
dey = e 0} + e,w3 + e;0].

Thus %, may be regarded as the oriented orthonormal frame bundle over E,. If
we are given an immersion X,: M2 — E,, we may regard X(p) = (Xo(p)) as
an immersion X: M2 — §3. Since we want to compare local surface theory in
E3 with conformal surface theory in S3, we may suppose that we have chosen a
lifting £: M? — %, of X, with the property that £( p) = (e,(p)) with eo(p) =
Xo(p), with e;(p) and e,(p) an oriented tangent basis of X,4(7,M), and of
course, with e,( p) = y. We write £*(w{) = 5§ in order to avoid confusion. We
then have

=0, wAN>0, w=0, 7w =h;n]

for some functions /,; on M.
The Gaussian and mean curvatures of the immersion X,: M? — E, = E are,
respectively

K= h11h22 - h%z, H= %(hll + h22).

Now £: M? — % is clearly a section of the bundle #§” — M? (though not
necessarily of #{"). We may compute 2, by using the identity @, =
£* o p*(8y),

Qy = (%(hu - h22)2 + h%z)ﬂ%) A T
—(H*—K)mhAnd=(H>—K)dA.

Thus £ vanishes only along the umbilic locus of X,: M? — E>. This shows
that, even though the Euclidean second fundamental form is not a conformal
invariant, the notion of umbilic is a conformal invariant. This justifies our
definition of the umbilic locus of X as the zero set of & . Another consequence
of this calculation is that the Euclidean invariant (H? — K) dA is actually a
conformal invariant. This fact was noted in connection with Willmore’s

problem by White [11].
In order to get a section of #{" - M?, it suffices to take £ = (&), where
é, = e, é, = ey, é,=e,,

€y =-e, + He,
é,=y+ Hes + 3H%, = e, + He, + 1H%,,
for, if we now compute #} = k, ;) = h, m), we get
dé, = de; + dHe, + Hde,
= egdH — e,(n} — Hny) — e,(n3 — Hn}),
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SO

0
M3

dH = hymo + hz’”lo,

773 = 771 - H770 = 3(hy - hzz)’”l%) + hlz"lg),
2 = 773 - H”I(z) = h12’7(2) + %(hzz - h11)"110-
Thus &, + A, = 0.

In particular, it follows that vy, = e; + He, is the conformal Gauss map of
the immersion X = (X,). This has the following geometric meaning: If v € Q,
then v* C L’ is a 4-plane on which the inner product { , ) restricts to have
type (3,1). In particular, v+ N#" is a cone over a round S? C S3. This S has
a natural orientation given by the condition that, if £ € # has e,(£) = v, then
e,, €, mod e, form an oriented basis of T, ,S 2. Conversely, every round,
oriented S2? C S arises in this way from a unique v € Q. Thus, the points of Q
form the space of round, oriented $2’s in S>. Given an immersion X:
M? - §3? of an oriented M2, suppose we fix p, € M. Then there exists a
1-parameter family of round, oriented S?’s in S* where are oriented tangent to
X(M?) at X( p,). If we think in terms of the Euclidean model E3 = §° — {(»)},
then these spheres are parametrized by their mean curvature (H = O corre-
sponds to a sphere through (y), i.e. a plane in E*). The sphere y,(p,) € Q is
the one with the “same mean curvature” as the surface X(M?) at X(p,).
Alternatively, in terms of the Euclidean model, the sphere v, (p,) is the one
such that any conformal transformation which renders it into a plane trans-
forms the surface X(M?) so that it has mean curvature zero at X( p,)-.

The conformal Gauss map has other interesting properties:

Proposition 2. Let Q C L? be given the induced pseudo-Riemannian structure
of type (3,1). Let X: M? — S* be a smooth immersion of an oriented surface and
endow M? with the induced conformal structure. Then vy: M? — Q is weakly
conformal, it is an immersion away from the umbilic locus of X, and Q is the
induced area form of Y. M? > Q.

Proof. On F$Y) we have wj = 0 so we compute

=5

(de,, dey) = <e0wg + e} + e,w3, egw) + e,0) + e2w§>

= («8)” +(e3)°

( nwp + h12w(2))2 +(hlz“"%) + hzz‘»'-’(z))2
(hu + h%z)(wo) + 2hy(hyy + By )W o Wy + (h12 + hzz)( )2
= (rh

+ hg)((h)" +())
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because hy, = —h,, on FiV. Because yy = e, on F5) and because the
pseudo-metric on Q is the restriction of the pseudo-metric on L°, we see that
(dvy, dyy) is proportional to (wh)?+ (w2)% which defines the induced
conformal structure on M2 This proves that yy is weakly conformal. The
induced area form of (dyy, dyy) is obviously

2

Finally, since 2, = —w} A &} on F{1, it follows that y,: M — Q is an
immersion away from %.

Remark. A word of caution is in order. Because the pseudo-metric on Q is
not positive definite, weakly conformal is not as strong a condition on vy as it
would be if the pseudo-metric were instead a positive definite metric.

In order to interpret the conformal transform geometrically, let us assume
that our immersion X;: M? — E, is umbilic free and that the framing #:
M? —> % is principal (ie. hy, = 0) with h;; > h,,. Then setting R

= y3(hy — hy) > 0, we may adapt Z: M?* > F further to 4: M* > F @
by £ = (e,), where

€y = Rey, e, =e, e, =e,,
e, = (e; + Hey),
&, = R e, + Hes + 1H?%,).
This allows us to compute
déy = e,(R™'dH ) — &7, + &,7;.
So
@3 = R™'aH = R'Hy, + RH S = =y + 7.
Thus, we may adapt £: M? - FP to £*: M? > F P by £* = (e*), where
e = Re,, ef = e, — Hyey,
e} = e, + Hye,, e¥ = ey + Heg,
ef = R\e,+ Hey — Hie, + Hpe, + (H? + HZ + H})e,).

As a consequence, we have w)* =

The geometric meaning of X = (e}) is now clear: If p € M is nonumbilic for
X: M?* — §°, then X(p) is the unique point in S> such that a stereographic
projection from X( p), p: 83— { X(p)} — E3, causes the mean curvature of
the immersion p o X: M? — E? to vanish to second order at p € M2,
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2. The variational equations for the Willmore functional

If X: M? - $3is a smooth immersion of an oriented surface, we have seen
that we may construct a canonical 2-form @, (> 0) on M? from the second
order jet of X. If K € M? is a compact domain in M, we can define the
functional

WK(X) = fﬂx

on the space of smooth immersions of M2 into $3. We say that X is a Willmore
immersion if for any compact K C M and any smooth variation X,: M — S*
with support in K, we have

S| -

(of course, X, = X). The purpose of this section is to calculate the Euler-
Lagrange equation for this variational problem in a conformally invariant way.
We do this by the method of moving frames.

Let X;; M? —» S3 be a smooth 1-parameter family of immersions with
support in a compact set K C M for |¢| < ¢ for some ¢ > 0. We may assume
that the variation is normal since the support is compact. It follows that we
may construct a G,-bundle #{" C M X (-¢, ¢) X Fwith the property that

Fi0 = (5,10, £) e 50

for all ¢z, € (~¢, €). (We cannot construct & @, etc., without making an
umbilic-free assumption).

The important defining properties of Y are that

® ‘*’0 Adt for some smooth function A on F{M.

(il) wh A 3 is semibasic for the projection % ,}") — M and is positive. (This
uses the normality of the variation.)

(i) @} = A, w({+>\ dt, d\ = A + Nl + N di, where h,; = h;;, A, N
are smooth functlons on F{n.

We also have hy; + h,, = 0. (These equations come from differentiating the
equation w} = Adr and using the structure equations. The normalization
hyy + hyy = 0 is the equation defining #{" C F{.) Now A is well defined up
to a multiple on M X (¢, &) and its support lies above K X (¢, &) in FyV
since A vanishes when the variation vectorfield vanishes. Also, the support of
the functions A, lies above K X (¢, &) because of the equation dA + Aw) =
A,wh + N’ dr. Note that we have

QX,(J = ( ""1 A ""Z)lt t
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for all ¢,. It follows that if we set

= —w} A w3+ dt A(3/80(0} A @3)),

then d/9¢1® = 0 and we have, for all ¢,
Qy =

‘o |t=to‘

This implies that @ is well defined on M X (-¢, €) and is semibasic for the
projection to M. We may then set

f() = WK(X’O) - '/;;I) =1

We compute the variation

rO= [(20®)| -

(since 9 /8¢ 1@ = 0). This expands to

f(0) = f(—B/BtJ(dwi A @A -0} A dwg)- —d(A@3 A Azwi))
K

=0
By the structure equations,
—d(w{ A w%) = wy /\(w1 AW+ w3 A wz) + wy /\(w%) AW+ @ A wg).
If we denote restriction to ¢ = 0 by an overbar, we find
—(8/0t1d(03 A @3))|,o =AA(BIA G+ & ABY)+ B3 A8 — A@3).

This may be rewritten as follows: We know that @) = k,&)) and, if we
differentiate this, use the structure equations, and apply Cartan’s Lemma, we
get

dh; = 2h,&) + k&) + h, &) + P&
for some smooth functions p,; = p;, on #47). It is then an elementary matter to
compute that

—(8/8t2d(w} A @3))|,eo = NP1y + Prn) @ A @2 — d(X(h,@3 — h,@))).
Thus, our formula becomes
£1(0) = [M(Pn + Pu)@h A G~ dx,
where

X = A@3 — MA@ + A 7@E — h,@5).
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It is now a routine matter to check that x is a well-defined, smooth 1-form
on M and by our previous discussion of A and A, x is supported in X. Thus, by
Stoke’s Theorem, we get the variational formula

f(0) = ‘/;(—X(ﬁu + Py )@y A @5

This motivates the following definition. Let X: M2 — §3 be a smooth
immersion and let {1 — M? be its y-order frame bundle. On %4, we have
©) = h,w} and the structure equations imply that there exist smooth functions
p;; = P;; onF 5P so that

dn; = 2h 03 + hw! + h,-jwj(-) + p 0.

Our discussion above implies that the two-form 8@, = (py; + py)wp A & is
well defined up to a positive factor on M (in any case, this is elementary to
check). We call 8% the first variation of the Willmore integrand, £ .. Note that
88y depends on the fourth order jet of X, while 2, depends on the second
order jet. We record this as

Theorem A. Let M? be an oriented surface. Then X: M* — S* is a Willmore
immersion if and only if 3¢, = 0.

Proof. 1If A is any smooth function on M with compact support in K C M,
then there exists a variation X, with support in X so that Ae, is the variation
vectorfield at r = 0. Then we have shown that

%(W(X:))uw = ‘/K)\aﬂx-

Since A is arbitrary with compact support, it follows that the left-hand side
vanishes for all such variations iff 8@, = 0. q.ed.

A few remarks are in order concerning the geometric meaning of the
condition 82, = 0. Since these will not be needed in the sequel, we leave the
proofs as exercises in the use of the structure equations.

The first remark is that, if we pursue the relationship with Euclidean surface
theory begun in §l, we can easily show that the condition 682, =0 is
equivalent to

AH +2(H*>~-K)H=0
when we regard X: M2 — S? as arising from an Fuclidean immersion X
M? > E3. In this form, the Euler-Lagrange equation for the integrand
f(H? — K) dA has been known for some time [12].
The second remark concerns the relationship of this problem with the

geometry of the conformal Gauss map yy: M2 — Q* For definiteness, let us
assume X: M? — Q% is free of umbilics. Then yy: M? > Q% is a space-like
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immersion and £ is the area form induced from the pseudo-metric on Q*.
From this it is obvious that if v, is a minimal immersion, then X must be
Willmore. Interestingly enough, the converse is also true. We see this as
follows: If we compute the signature of the inner product on the normal
bundle to the immersion v,, we see that it is of type (1, 1). In fact, because of
our umbilic-free assumption, the normal plane to v, at p € M is the 2-plane
spanned by X(p) and X(p) (the conformal transform). By the structure
equations, the mean curvature of the immersion vy in the direction X is zero
already. The condition that the mean curvature in the direction X be zero is
exactly that 88, = 0. This establishes our claim. In some sense, the theory of
minimal space-like surfaces in Q* and the Willmore surfaces in S> are the
“same” theory, at least under suitable nondegeneracy hypotheses. This situa-
tion has been encountered before in the relationship of surface theory in S*
(instead of Q*) with the theory of complex curves in Q;(C), the complex
3-quadric (instead of real surfaces in S3). This should be no surprise since
SO(5) and SO(4,1) are merely different real forms of the same complex Lie
group. It appears that all of this must fit into a sort of generalized twistor
program, but we will not pursue this any further.

Our third and final remark is related to the second. If y,: M2 — Q% is
minimal and U C A, (C M) is the open set, where X: 4 — S% is an
immersion, then yz: U — Q%is given by the formula y5 = —vy. It follows that
X: U - $?is a Willmore immersion and that X = X. In this case, we say that
X is the Willmore dual of X. In the next section, we are going to show that X
extends to be a smooth map X: M?* > S? and is, in fact, a conformal branched
immersion, where we use the conformal structure on M? induced by X:
M? > S3

3. The conformal structure and some complex geometry

Throughout this section X: M? — $? will be a Willmore immersion of an
oriented surface M? and F{ — M? will denote the G -bundle of y-order
frames. The quadratic form (w})? + (w})? is well defined up to a positive
multiple on M2 and hence induces a well-defined conformal structure on M2,
Moreover, the orientation of M? is represented by the positivity of the 2-form
wh A w3 (again only defined up to positive multiples on M?). It follows from
the existence of isothermal coordinates (see [3]) that M? possesses a unique
complex structure compatible with the given conformal structure and orienta-
tion. The defining property of this complex structure is that a complex valued
1-form n on M? is of type (1,0) iff p*(n) = a(w} + iw]) for some complex
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function a on %} (where p is the projection p: 4§ — M?). From now on,
we regard M2 as a complex curve with this given complex structure.

Retaining the notation from §§1, 2, we introduce the complex notation for
forms on F{V:

(3.1) w=wh+ivd, a=&+i0), ¢=0wl, p=w?,
(3.2) z = hyy — ihy,, h=3(hy — ih,).
Then the formulae in §1 become
(3.3) w0l — e = zw,
(3.4) W) =he + ha,
(3.5) dz = (¢ +2ip)z + {w + h®,

where { is a linear combination of the &, ;, (the coefficients are unimportant for
what follows). Differentiating (3.4) and using the structure equations give

(3.6) dh=(2¢ +ip)h+ tza + qu,

where g = (P11 — ip12), as the p;; = p;; were defined in §2. Note that (3.6) uses
the fact that X is a Willmore immersion, i.e., p;; + p,, = 0. Otherwise, we
would have had to add the term 3( p,; + p,,)® to the right-hand side of (3.6).

For convenience, we list the following consequences of the structure equations
in this notation:

(3.7) do=—(¢ +ip) Aw,

(3.8) da=(¢—ip) Aa—hiw A @,

(3.9) dp=3(aAw+aA),

(3.10) dp=(i/2)zzo A @ +(i2 (@ A @+ a A Q).

Theorem B. There exists a holomorphic quartic form 2 , on M defined by the
condition

P*(2x) = (2g = hE)()".

(Note that we use the symmetric product (w)* = w° w ° w o . Thus, we are
asserting that 2 , as defined above is a holomorphic section of the fourth power
of the canonical bundle over M.)

Proof. If we differentiate equations (3.5) and (3.6) using the identities
(3.5)—(3.10) and applying Cartan’s Lemma, we see that there must exist
smooth functions r, s on %Y satisfying

(3.11) dt = (2¢ + 3ip)¢ — 3za — 2%26 +rw + qw,
(3.12) dg = (3¢ + 2ip)q + 3ta — 2ha — hzz® +sw.
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But then, equations (3.5), (3.6), (3.11) and (3.12) combine to give
(3.13) d(zq—h%) =4(¢ + ip)(zqg — hg) +(zs — hr)w.

Now, if f and g were any smooth functions on %" and n > 0 were any
integer satisfying the equation
(3.14) df = h(¢ + ip)f + gw,
then the quantity f(w)” would be semibasic and locally constant on the fibers
of {1 — M (by (3.7) and (3.14)). Since G, is connected, this would be enough
to ensure that there existed an % on M so that p*(F) = f(w)". Moreover, we
claim that this § would necessarily be a holomorphic section of the nth power
of the canonical bundle of M. It suffices to check this locally, so let m € M be
fixed and let §: U — C be a holomorphic coordinate chart on a neighborhood
U of m. Then d§ is of type (1, 0) so it follows that there is a section over U, say
o: U - FV, satistying 6*(w) = d¢. Then

0 =d% = o*(dw) = —0*(¢ + ip) A o*(w)
= —o*(¢ + ip) A d¢,

so o*(¢ + ip) = adé for some a € C*(U) (complex valued, of course). Be-
cause ¢ is a section,
Fw = 0*(f(«") = (fe0)(d)".

Finally, (3.14) implies d(f o 6) = (g + naf) d¢,s03(f °a)/3& = 0.

In other words, f ° o is a holomorphic function on U, so &, = (f e o)(dé)"
is a holomorphic section of the nth power of the canonical bundle restricted to
U. Since m € M was arbitrary, it follows that ¥ is holomorphic.

Now all that we have said applies in the case where n = 4, f = zg — h§,
g=zs—hrand & =2,.

Theorem C. Let M? be connected and let X: M?* — S* be a Willmore
immersion. Either %y = M? or else Uy is a closed subset of M* with no interior.
In this latter case, the conformal transform extends uniquely and smoothly to a
map X: M?* — S If 2,=0, then X is a constant map. If 2, %0, then X
M? — S* is a conformal branched immersion where the branching order of X at
m & M? is less than or equal to the vanishing order of 2y at m.

Proof. Consider the map Y: %{" — L3 given by

(3.15) Y = 2hhe, — zhe — zhé + z3e,,
where e = e, — ie,. We compute that
(3.16) (Y, Y)=0

and the structure equations show that
(3.17) dY = 3Y¢ + Zo + Z&,
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where

(3.18) Z = 2hqge, — Zqe — h{é + Zte,.
We have the identities

(319) (v,2)=(2,2)=0, (Z,Z)=2(zq—ht)(zq— k).
In particular,

(3.20) (dY, dY) = 4z — h{|’w o G.

Note that #, € F{7 is defined by the equation2 = 0,z = 1,50 Y = ¢, on
FP UFP + @). Now equation (3.17) shows that, on any fiber of #{ —» M,
Y only varies by a positive multiple, so, in particular (Y): A% — S3 is well
defined (since Y: FE( A y) = L) and is equal to the conformal transform
Xy - 83

We are going to show that either Y = 0 (so that %, = M) or that there
exists a smooth Y,: ¥V — %" and a smooth nonnegative function with
isolated zeros, A, on M so that Y = AY,. It will follow that (¥;): M> - S3isa
smooth extension of (Y): A"y — §* and hence of X. Uniqueness and the rest
of the properties claimed for this extension will follow from our construction
of Y.

First we must prove a few facts.

Fact 1. If U C M is an open set with a holomorphic coordinate chart &:
U — 9 C C, then there exists a unique section o: U — F5 satisfying o*(w)
= d¢and o*(¢ + ip) = 0.

Proof. Because d¢ is of type (1,0) and nonvanishing on U, there exists a
smooth (complex-valued) function @ on % (U) so that a # 0 and

(3.21) p*(d§) = aw.

Taking the exterior derivative of (3.21) and using (3.7), we see that there
exists a smooth function b on F{(U) so that
(3.22) da= (¢ +ip)a+ bw.

Taking the exterior derivative of (3.22) and using (3.7), (3.9) and (3.10) we
see that there exists a smooth function ¢ on #{(U) so that
(3.23) db=2(¢ + ip)b — a& + cw — }azza.

It follows that there exists a unique section o: U — F{(U) satisfying
o*(a) =1 and o*(b) = 0. Applying this o to (3.21) and (3.22) gives the desired
result.

Fact 2. Let m € M be fixed and let U be a connected open neighborhood
of m on which there exists a coordinate chart & U —» 2 C C with §(m) = 0.
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Let 6: U — F{(U) be the section defined above by Fact 1. Then either the
functions z ¢ ¢ and 4 o ¢ vanish identically on U or there exists a nonnegative
integer k and smooth functions z;, A, on U with (z,(m), hy(m)) # (0,0) so
that

(3.24) zoo = £z, hoo = £*h,.
Proof. Applying o* to (3.23) we get
(3.25) o*(a) = (coo) dt — Y(z00)(z00)dt.

If we apply 6* to (3.5) and (3.6) we get
d(zoc)=({co)dt+(hoa)dE,

(20 yhoo)= (goo—3(z00)(z00) ) dt + 3 (co0) (z00) dE.

In particular, we have

0 (zoo 0 I\/zo0
(3:27) a—g_(h°o)_(%(coo) o)(hoo)'

It is now an elementary consequence of the Newlander-Nirenberg theorem
(see [10]) that (3.27) implies the conclusion of Fact 2.

Remark. If zoo and heoo vanish identically on U7 we set k(m) = o0,
otherwise, we let k(m) > 0 be the integer defined in Fact 2. It is an elementary
matter to check that k(m) is actually well defined, i.e. depends only on m.

The proof of Fact 2 actually shows that the sets

U, = (meMlk(m) =), U= {me Mlk(m) < o)

are open, disjoint and cover M. It follows that one must be empty (since M is
connected). If U, = @, then z = 0 on #") so %, = M. We now set this case
aside and we assume U = &.

Again, the proof of Fact 2 shows that the set U, = {m € M|k(m) > 0} isa
discrete set and hence that

D= Y k(m)-m
meM

is a divisor in M. We are now going to show that %, has no interior. Indeed, if
m € M, then selecting U and o as above, we may write zog = £z,. If
z,(m) # 0, then the only possible zero of z o ¢ on a sufficiently small neighbor-
hood of m is m itself since £ vanishes only at m. If z;,(m) = 0, then h;(m) # 0
and (3.27) implies 3z, /0 = h;, so dz, # 0 at m. It follows that z;(0) has no
interior on a neighborhood of m (sufficiently small). Thus the locus ze o = 0
on a neighborhood U’ € U has no interior, so we are done. The fact that %, is
closed is obvious.
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Now for each m € U_, choose an open disk A,, C M withm € A, insucha
way that A, N A, = & form # n. Let£,: A,, = A be a holomorphic coordi-
nate, where £,,(m) =0 and A = {4 € C||a| < 1} is the unit disk in C. By a
partition of unity argument, we may construct a smooth real-valued function A
on M with the property that on each disk A, we have A|, = (£,£,)*"™ and
A(m)>0ifm ¢ U,.

Fact 3. The map (A o p)~1Y has a unique smooth extension, Y,, across the
fibers p~}(U,) € F.

Proof. Because U, is discrete in M, the compliment of p~%(U,) is dense in
F{1. Thus if there is a smooth extension it is unique. To show that Y, exists it
clearly suffices to show that, for each m € U,, A"'(Ys,,) has a smooth
extension across m, where o,: A, — F{V(A,,) is the section in Fact 1. When
we restrict to A, A = (£,£,,)°", so

(3.28) A NYoo,)=2hh(eyo0)—Zh (ec0) +z,7(e °0),

which is clearly a smooth map from A, to.#*. q.ed.

From now on, we refer to this smooth extension as Y: %4 — £*. It is now
a routine (albeit tedious) matter to show that if we set d(A e p) = pw + po
and Z, = (A o p)™Y(Z — pYy), then Z,: F§) — L? is also smooth and we have
the relations

<Y0’Y0> =0, <Y0,Zo> =0, <ZOaZO> =0,
(Zy, Zy) =21z — )P (Aop)”,  dY, =3y + Zyw + ZoB.
Factd. If2, = 0, then (Y,): M> — S$?is a constant map.

Proof. 1t clearly suffices to prove that (Y): M*> — U, — S’ is a constant
map. To do this, it is sufficient to note that

YAZ=—(zg—h¢)(hz)(2egne,+ené)=0

if 2,=0, s0 YAdY=0 on%{. This is well known to imply that (Y):
M? - U,— S?isconstant. q.e.d.

Now suppose 2, # 0.

Fact5. If »(m) is the vanishing order of 2 y at m, then »(m) > 2k(m).

Proof. 1f m & U, there is nothing to prove, so assume k(m) > 0. Then, in
the notation of the proof of Fact 2, we see that

Coo=0d(z00) /3¢ = ktv 1z, + £43z, /03¢,
goo=1(hoo) /3t + %(zoo)z(zoo)
= h& " hy + £%0h, /3¢ + GEPRER .
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But then, on U, we have
2, = 0*((zq — h§)(w)°)
= £2%(2,(3h,/0¢) — hy(3z2,/88) + 1E237,)(d¢)".

Since £(m) = 0 but d¢ # 0, the claim follows.
1t follows, since

(dYy, dY,) = 4(Ao p)?lzg — hiPw o @,

that (Y,): M? - 3 is a branched conformal immersion with branching order
v(m) — 2k(m) at m € M (see [6]). This concludes the proof of Theorem C.

4. The spherical Willmore surfaces

In this section, we prove our main theorem concerning the Willmore
immersions X: §2 — §3. The starting point is

Theorem D. Let X: S* — S3 be a Willmore immersion. Then 2y = 0. Thus,
either X is all umbilic, so that X(8%) C S* is a round 2-sphere, or else X:
S? > §3is a constant map.

Proof. The form2,is a holomorphic section of k4, where « is the canonical
bundle of §2=PL It is well known that k = 0(-2), so k*= 0(-8). In
particular k* is a negative bundle so any holomorphic section of k* vanishes
identically. Thus 2, = 0. The rest follows from Theorem C.

Theorem E. Let X: M?> > S? be a Willmore immersion of a compact
connected surface M?. Assume that X is not all umbilic but that 2, = 0. Let
X=(y,)€ 83 let D=X"(y,)) S M? and let M* =M — D. Then D is a
nonempty finite discrete set. If p: S* — (y,) = E? is a stereographic projection,
then po X: M* — E3 is a complete minimal immersion with finite total curva-
ture. Its ends are imbedded and have zero logarithmic growth.

Proof. The fact that D is discrete (and hence finite) follows from the fact
that X is an immersion. The fact that p  X: M* — E?is minimal follows from
our discussion in §1, since, for each m € M*, X(m) = (y,) # X(m) and we
saw that the stereographic projection S* — { X(m)} — E* caused the mean
curvature of the image surface to vanish to second order at m. Thus the mean
curvature H of p o X: M* — E3 vanishes to second order at every m € M* and
hence must vanish identically on M*. Since there are no compact minimal
surfaces in E3, it follows that M* cannot be all of M, i.e., D # J.

The completeness of p o X: M* — E is almost obvious since it suffices to
show that if {m,} is a sequence in M* converging to p, € D, then p° X(m,)
diverges to oo in E3. But, if m, > p,, then X(m,;) > X(py) = (y,) so
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p° X(m,) — oo in E Finite total curvature follows from the identity in §1,
that

fM‘(—K)dA = fM*(HZ—K)dA = /M*Q": /MQX< %0,

where d4 is the induced area form on M* for po X: M* — E? and K is the
Gauss curvature of the induced metric. The first equality above follows from
H =0, the second from §1, the third follows from the finiteness of D, and the
finiteness at the last stage follows from the compactness of M.

Clearly the ends of M* are in one-to-one correspondence with the points of
D. In fact, if my € D, then there exists a disk A; € M which is an open
neighborhood of m, and on which X: A; — S° is an embedding. But then
pe X: Ay — {my} — E? is an imbedding. This shows that the end at m, is
imbedded. Since m, € D was arbitrary, it follows that pe X: M* — E? has
imbedded ends.

By a theorem of Osserman [9], it follows that d(p o X) is a meromorphic
C3-valued 1-form (of type (1,0)) on M with poles exactly on D. The fact that
each end is imbedded implies that the order of the pole at m, € D is exactly 2.
Let Ay € M be an open disk containing m, (and no other point of D) and let
& Ay — {a € C|laj <1} be a holomorphic coordinate with £(mg) = 0. It
follows that there exist vectors {v;, € C3|-2 < i < o0} with v_, # 0 so that on
A, we have a series expansion

3peX)= (&2, + &0, +v,+ -+ ) dE.
This implies (by the reality of p o X) that, restricted to Ay — {m,},
poX =Re(-£t,+ log(£)v, + v+ -+ )+ V,

where V' is a constant vector in E>. Because po X is single valued on
Ao — {mg), we must have Im(v_;) = 0 so v_; € E3. If we use (, ) to denote
both the inner product on E? and its complex extension to C?, we know that
the conformality of p o X implies (3(p ° X), 3(p o X)) = 0. In particular, this
gives

(U-z,v-z) =0, (0—2’0-1) =0, (v-1>v_1) = —2(0-2,00)-

It folllows that by a rotation and dilation in E*, we may arrange that

-1 0
v_z=(—i), U_1=(()) (c € R).
0 c
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We may then set ¢ = ¢! + j£2 and compute that

£'¢7% + Re(éh,)
(4.1) po Xy, = £21€°2 + Re(£h,) | + V,
(¢/2)logl£|* + Re(hs)

where 4, h,, and k&, are holomorphic functions of £ on the unit disk. We may
also assume V = 0 by translation in E3. It follows that for a small disk about
m,, the image under p o X looks much like an end of a catenoid. The constant
(—c) is called the logarithmic growth of the end at m,. We are going to show
that ¢ = 0.

Let us suppose, contrariwise, that ¢ # 0. Then the third component of
d(p ° X)is of the form

(3(po X)) =c(¢7 + ag+ af +ard>+ --- ) dé.

It is easy to see that there exists a unique holomorphic coordinate n: Ay — C
satisfying n(m,) = 0,

d
Z2(mo) =1,

‘;_71 =(¢ Y +ag+att+ -+ )de.

In fact, we may now replace ¢ by 5 without affecting the normalizations
made thus far. This has the effect of setting £, = 0 in (4.1). (Of course, if ¢
were zero, we could not do this.)

Now let I: E* — {0} —» E* — {0} be the inversion through the sphere of
radius one centered at 0 € E>:

1 1
x2 _ 1 x2
x| = —Z|x*)

3 x| 3
X X

This is a conformal transformation and exchanges 0 for the “point at
infinity”. Because X: M2 — S? is smooth at m,, it follows that (1o p)e X:
M — E? is smooth at m,. If we compute the third component of (Iop)o X
restricted to A, we get

(c/2)|¢|2log}é]?
1+ £(£, &) + c2/4182(logl?)”

where f is a smooth function of £, £ vanishing to second order at ¢ = 0. It is
now an elementary matter to show that, although (® o p o X), is always C! at

(IopoX)3=
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¢ =0, it is never C* unless ¢ = 0. Since (® ° p ° X), must be a smooth function
of £, we see that we must have ¢ = 0. This completes the proof of Theorem E.

Remark. Because the ends of p o X: M* — E? are imbedded, a theorem of
Osserman [9] asserts that

(4.2) f 8x= fM_(—K) A = 2m(2d - x(M)),

where d = |D| = the number of points in D. Now, if (y;) € S? is not in the
image of X, then, taking a stereographic projection p;: S° — {(»,)} — E? gives
an immersion X = p, o X: M — E? which satisfies

(4.3) fM(ﬁz ~R)dd = anX = 27(2d — x(M)).

Because X is an immersion and M is compact, the Gauss-Bonnet theorem
then implies
(4.4) f H2dA = 4nd.
M
On the other hand, Li and Yau show [8, Theorem 6] that if y: M — E3 is
any smooth immersion and & is the maximum number of preimages under  of
a point in E?, then

(4.5) fMHj dA, > 4nk.

In our case, X (p,((¥,))) = D so the map ¢ = X always produces equality
in their theorem.

Another remark is that a converse to Theorem E holds in the following
sense: If M is an orientable surface and X,: M — E® is a complete minimal
immersion of finite total curvature, then the above quoted theorem of Osser-
man asserts that there is a compact Riemann surface M, a finite set of points
D C M and a diffeomorphism M — M — D so that X,: M — D — E2 is confor-
mal and 98X, is a meromorphic C3-valued 1-form on M. If, moreover, the ends
are imbedded and have zero logarithmic growth, then we claim that the
composition X,: M —D — E* - §% — (y,) has a smooth extension to X:
M — §* with X(D) = {(y,)}. Obviously X will be a Willmore immersion with
2, = 0. To prove the smoothness of the extension, it suffices to note that,
when an end has zero logarithmic growth (and is imbedded), then on a disk
about m; € D, we may put X, in the form

£'¢7* + Re(éh,)
Xo = | £%1¢7* + Re(¢h,)
Re(¢h,)
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by a rotation and translation in E3. Here £ = £! + i£2 is a local holomorphic
parameter with £(m,) = 0. One then computes that

£+ |£>Re(éhy)
£+ |£°Re(¢h,) |,
|£]> Re(¢h5)

where f(¢, £) is a smooth (in fact, analytic) function vanishing to second order
at £ = 0. Obviously 7 < X, completes smoothly across m,,.

It follows that for a compact, oriented surface M, the problem of classifying
the Willmore immersion X: M — §3 satisfying 2 , = 0 is equivalent to classify-
ing the complete minimal immersions X*: M* — E* of finite total curvature
and with imbedded ends of zero logarithmic growth, where M* = M —
{my,---,m,}. This latter is essentially an algebraic geometry problem. To see
this, suppose we start with an X* as above. We then give M* the unique
complex structure compatible with its orientation and the conformal structure
induced by X*. The completed surface, M*, is diffeomorphic to M by the
theorem of Osserman and henceforth we identify them, writing the deleted
points as D = {my,---,m,}. We know that

IeX,

T 148 E)

wl

aX* = w2 >

w3

where !, w2, > are meromorphic 1-forms on M. Our geometric data translate

into holomorphic data as follows:
(i) X* is an immersion < the &' have no common zeros.
(i) X* is conformal = (w')? + (@?)? + (@)% = 0.

(iii) The ends of X* are imbedded < the «’ have poles of at worst second
order on D « the &' are holomorphic sections of K,, ® [2D], where K, is the
canonical bundle of M with the given complex structure.

(iv) The ends of X* have zero logarithmic growth < the «’ are differentials
of the second kind, i.e. Res, («w') = 0 for all i and allm € D.

(v) X* is single valued on M* « for all y € H,(M,Z) Re(Per («')) = 0 for
i = 1,2,3. (Note that this is well defined because of (iv).)

Conversely, if we start with M and wish to construct the possible X*’s, then
we begin by selecting a complex structure on M and a divisor D = m; +
-+« + my, where the my; € M are distinct. The vector space H%(K,, ® [2D))
of holomorphic sections of K,, ® [2D] is a complex vector space of dimension
2d + g — 1 by the Riemann-Roch Theorem (see [5]). The subspace

H°(K, ®[2D]) = {w € H*(K,, ®[2D])[Res, (w) =0form € D}
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is a complex vector space of dimension d + g. Finally, the subspace
Vp={w e A°(K, ®[2D])Re(Per,(w)) = 0 for all y € H,(M,Z)}

is known to be a real vector space of dimension 24. To construct an X*, it
remains to select three elements o', &2, w* € ¥V, with no common zeros and
satisfying

(1)’ +(0?)? +(*)* = 0.

If this can be done (it may not be possible for a given D), the required X* is
then given by the Weierstrass formula

1
m w
XH(M) = X*(mq) + Re| [ o2 ],

mgy
w3

where my & D. The «' were chosen to lie in ¥}, precisely to insure that the real
part of the path integral in this formula should be independent of the path
joining m to m,,.

In the case that M = S? we can be much more explicit for two reasons.
First, S? has a unique conformal structure up to diffeomorphisms. It follows
that there is no loss of generality in assuming that S = P!, the complex
projective line, and that the Willmore immersion under consideration is
actually conformal as a map X: P! — S3. Second, H,(S?%,Z) = (0), so condi-
tion (v) above is vacuous. Indeed, we can say more: Any meromorphic 1-form
¢ on P! with no residues is exact, i.e., there exists a meromorphic function f on
P! with ¢ = df. This is more or less clear, but for a proof, see [5).

This brings us to our main theorem:

Theorem F. Let X:P! — S* be a conformal Willmore immersion. There
exist a point (y,) € X(P) (unique if X is not totally umbilic) so that D =
XY(py)) is a divisor in P' with distinct points, a stereographic projection p:
S* — {(»9)} — E* and a meromorphic curve f: P* — C3 with simple poles along
D so that p o X = Re(f). .

Moreover f is an immersion with null tangents (i.e. (df, df ) = 0). Conversely,
if f: P > C3 is a meromorphic immersion with simple poles along D and null
tangents, then Re(f): P! — D — E3 completes smoothly across D to be a
conformal Willmore immersion (Re(f)): P = §°.

Proof. By Theorem D, 2, = 0. If X is all umbilic, choose (y,) arbitrarily
on X(P') C S3. Then any stereographic projection p: S* — { y,} — E* makes
pe° X: P! — D — E? a stereographic projection onto a plane. Note that in this
case D is a single point. If X is not all umbilic, we apply Theorem E. In either
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case, p° X: P! — D — E? is a conformal minimal immersion which is com-
plete, has finite total curvarture and imbedded ends with zero logarithmic
growth. It follows that d(p ° X) is a meromorphic C>-values 1-form with no
residues and double poles along D. By our discussion above, there exists a
meromorphic f: P! —» C? so that df = 28(p° X) and f clearly must have
simple poles along D. Now
d(peX)=8(poX)+3(poX)=13(df +df) = dRe(f).
By adding a constant to f we may arrange that p = X = Re(f). Note that fis an
immersion since p o X is and that
(df.df) = 4(3(pe X),8(p° X)) = 0.

The converse is now elementary. q.e.d.

The determination of the meromorphic null curves f: M — C3 (where M is a
Riemann surface) is classical, see [4]. For such an f, either f(M) is a null line
in C? or else there exist meromorphic functions g, # on M with g nonconstant
so that

i/2 -i/2g i(l +g2/4) (h )

f=1-3 3 Q-4 ||¥

0o -1 g h
where 4" and 4” are meromorphic functions on M defined by 4’ = dh/dg and
" =dh'/dg.

We then have
i(1+g%/4)
I=| - gya) |
g

If we regard g as a holomorphic map g: M — P, then g is the Gauss map of
the minimal immersion Re(f): M — D — E3 (D is the polar divisor of f), see
[9]-

Unfortunately, it appears to be a nontrivial algebraic problem, even when
M = P!, to specify g and 4 so that the resulting f will be a meromorphic
immersion with simple poles.

5. An example and further results
It follows from our results in §4 that the critical values of the modified
Willmore functional

Wy (X) = fzﬂx
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for immersion X: S? — S? lie in the discrete set {47d|d > 0}. Obviously, if
W52 (X) =0, then £, = 0 so that X is totally umbilic and hence X gives a
diffeomorphism of S? onto a round 2-sphere in S°. Thus, all these Willmore
immersions are equivalent modulo reparametrizations in S? and conformal
transformations in S,

If X: $2 - S?is a Willmore immersion with #5:( X) = 4nd > 0, then X is
not totally umbilic and the associated meromorphic null curve f: P — D —» C3
has d + 1 poles. It is easy to see that the requirement that f be an immersion
with simple poles eliminates the possibilities d = 1,2. Thus 47 and 8+ are not
critical values of #:. When 4 = 3, a calculation shows that there is a
meromorphic coordinate z: P! — (p_) — C so that D is given by

3
D={p,} U{p e P(z(p)) = 1}.
In fact, if we let ¢ denote a nontrivial cube root of unity, then the curve
v v, Us

1
= VpZ — - - +
f 0 Z — & Z-—ez 2—1 fO,

where f, € C? and vy, vy, v,, v; € C? satisfy
(v v) =X #0, 1<i<j<3,
(v;,v,)=0, 1<i<3,
vo = 3(evy + €%, + 03),

is the most general meromorphic null immersion with polar divisor D.

Now it is easy to see that two such curves, f and f, determine conformally
equivalent map, (Re(f)): Pt — §° and (Re(f)): P! — §? if and only if the
minimal immersions Re(f) and Re(f): P! — D - E? differ by Euclidean
motions and dilations. By translation and dilation in E* we may normalize our
maps fand fso thatf, = f, = O and |A| = [A| = 1.

Now every real rotation R: E* — E? extends complex linearly to R: C? — C3.
This imbeds SO(3, R) into SO(3, C). Clearly, there exists an 4 € SO(3,C) and a
p € C satisfying

b, = pAv;, 0<i<3

(we have A = u2)). It is now not difficult to show that Re( f) and Re( f) differ
by a Euclidean motion if and only if 4 € SO(3,R) and p = 1.

It follows that, after taking into account reparametrization in S and
conformal transformations in §3, the moduli space for Willmore immersions
with d = 3 (i.e. #2(X) = 127) is SO(3,C)/SO(3,R) x S modulo the action
of A,, the alternating group on four letters (permuting the points of D by
linear fractional transformations on P'). Surprisingly, this space is #not compact
and is of dimension 4 (at its smooth points).



52 ROBERT L. BRYANT

Now a similar situation holds for d = 2n + 1, n > 1. One can show that,
modulo the obvious equivalences, the moduli space of Willmore immersions X:
$? > §3 with #2(X) = 4od is nonempty and of dimension 4n at its smooth
points.

For even values of d, this author does not know whether the moduli space is
nonempty.

In view of Theorem C, it seems natural to attempt to extend the Willmore
functional to the space of conformal branched immersions X: M2 — §3, where
M is an oriented surface with a fixed conformal structure. In fact this can be
done, though considerable care must be exercised in extending the conformal
Gauss map vy: M? — Q across the branching divisor B. Once this is done, @
is again seen to be a smooth 1-form on X. The condition 8§}, = O then allows
us to construct X: M? - $? in a smooth manner. It, too, is a branched
conformal Willmore immersion. In fact, if we let B denote the branching
divisor of X and let U, denote the divisor

U,= )y k(m)m >0,
meM
then, for M compact and connected, either
(1) X is totally umbilic,
(i) X is constant, or
(iii) we have the equation of line bundles
K, =[B]®[B] ®f2U.].
Thus, for M = S2, the third possibility cannot occur.

When M is a torus, K, has degree zero so either X: M2 — $° is a branched
cover of a round 2-sphere, comes from a minimal surface in E* by stereo-
graphic projection, or else X and X are both imersions (B = B = 0) and
U_= 0. In the first two cases, #’,(X) = 4nd, where d > 2. In the third case,
the Clifford torus in S furnishes a Willmore surface with #,(X) = 272 < 8«
(see [12]).

Whenever the second possibility occurs, a stereographic projection p: S* —
{X(M)} - E> makes poX: M — D — E? a complete branched minimal
immersion of finite total curvature (here D = XY X(m))). The meromorphic
form 9(p o X) still has poles along D but they may be of higher order than 2. It
seems likely that 3(p o X) has no residues, but we have not proved this.
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